

Simulation study of energetic ion confinement in prolate field-reversed configuration

Nathaniel Barbour¹, Elena Belova², Masaaki Yamada²

¹Yale University, ²Princeton Plasma Physics Laboratory

• HYM code utilized for simulation

- Ion confinement studied in following cases:

 - 3. Perturbations applied: n=1 and n=4 tilt-like and radial modes

Perturbations applied:

- Radial: $v_r = Ah(x) \cos \Phi$; A = 0.1*v_A, ω =0.1* ω_{ci}
- Ohm's Law
- Particle loss defined as particle contacting axial or radial wall of simulation

- and μ is roughly conserved.
- reflected
- µ is not conserved for transits across midplane, leading to stochastic diffusion in velocity space.

- For t < 200, most losses are along open field lines.
- For t > 400, stochastic obit losses; larger for large S^{*.}